חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHПOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE CODE: GNC501S	COURSE NAME: GENERAL CHEMISTRY 1A
SESSION: JULY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS
MODERATOR:	DR. MARIUS MUTORWA

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS
Non-programmable calculators

ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES
(Including this front page, list of constants and periodic table)

QUESTION 1: Multiple Choice Questions

- There are 20 multiple choice questions in this section. Each question carries 3 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. When naming a transition metal ion that can have more than one common ionic charge, the numerical value of the charge is indicated by a:
A. Prefix
B. Suffix
C. Roman numeral following the name
D. Superscript after the name
2. In which of the following are the symbol and name for the ion given correctly?
A. Fe^{2+} ferrous ion
B. Sn^{2+} tin (III) ion
C. Co^{2+} cobaltous ion
D. Pb^{2+} lead ion
3. What is the correct name for $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
A. tritin diphosphate
B. tin (III) phosphate
C. tin (II) phosphate
D. tin(IV) phosphate
4. What is the correct formula for calcium dihydrogen phosphate?
A. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
B. $\mathrm{Ca}_{2} \mathrm{H}_{2} \mathrm{PO}_{4}$
C. $\mathrm{Ca}_{2} \mathrm{H}_{2} \mathrm{HPO}_{4}$
D. $\mathrm{Ca}_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)$
5. Which one of the following Name-Formula combinations is NOT correct (is FALSE)?
A. Mercury (I) chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
B. Dinitrogen trioxide, $\mathrm{N}_{2} \mathrm{O}_{3}$
C. Hydrogen chloride, HCl
D. Cerium (IV) phosphate, $\mathrm{Ce}_{4}\left(\mathrm{PO}_{4}\right)_{3}$
6. For a particular organic compound, which of the following pairs can represent the empirical and the molecular formulas, respectively?
A. CH and CH_{4}
B. CH and $\mathrm{C}_{6} \mathrm{H}_{6}$
C. CH_{2} and $\mathrm{C}_{2} \mathrm{H}_{2}$
D. CH_{2} and $\mathrm{C}_{2} \mathrm{H}_{3}$
7. The percent manganese in potassium manganate, $\mathrm{K}_{2} \mathrm{MnO}_{4}$, is:
A. 13.2\%
B. 27.9%
C. 29.0\%
D. 34.8%
8. What external pressure must be supplied to compress 2.76 L of a gas at 298 K and 0.878 atm to 2.00 L at 298 K ?
A. 484 mmHg
B. 921 mmHg
C. 760 mmHg
D. 878 mmHg
9. At STP, 4 moles of CO_{2} gas occupies:
A. 20.4 L
B. 22.4 L
C. 89.6 L
D. 2.24 L
10. If 0.250 mol of $\mathrm{He}(\mathrm{g}), 0.500 \mathrm{~mol}$ of $\mathrm{Ne}(\mathrm{g})$ and 0.150 mol of $\mathrm{Ar}(\mathrm{g})$ are transferred to a previously empty 5.00 L container at $25^{\circ} \mathrm{C}$, what is the final pressure in the container?
A. 4.40 atm
B. 2.86 atm
C. 5.72 atm
D. 3.81 atm
11. If a mixture of noble gases consists of 0.150 mole of $\mathrm{He}, 0.450$ mole of Ne , and 0.300 mole of Ar , what is the mole fraction of Ar in this mixture?
A. 0.300
B. 0.500
C. 0.667
D. 0.333
12. A solution is prepared by dissolving 0.100 mole of HCl in 75.0 g of water. Calculate the mass percent HCl in this solution.
A. 0.133\%
B. 4.64%
C. 4.87%
D. 4.01%
13. To what volume, mL , must 50.0 mL of $3.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ be diluted in order to make $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 25
B. 60.1
C. 87.5
D. 93.2
14. A solution is prepared by dissolving 20.0 g of NaOH in 750 g . of water. The molality of this solution is?
A. 1 m
B. 26.7 m
C. 0.0267 m
D. 0.667 m
15. Calculate the freezing point in ${ }^{\circ} \mathrm{C}$ of a solution containing 0.0100 mole of a non-electrolyte in 100.0 g of water (K_{f} of water $=1.86^{\circ} \mathrm{C} / \mathrm{m}$).
A. -0.186
B. +0.186
C. 0.010
D. -0.010
16. What is the best name for the following compound?

A. 2-methylcyclohexene
B. 2-methylcyclohexene
C. 1-methylcyclohex-2-ene
D. 3-methylcyclohexene
17. The condensed structural formula for 2,2-dimethylbutane is:
A. $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{C}_{6} \mathrm{H}_{14}$
C. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
D. $\mathrm{C}_{3} \mathrm{H}_{7}$
18. Which one of the following is the correct structural formula for cyclohexane?
A. $\mathrm{C}_{6} \mathrm{H}_{12}$
B. $\mathrm{C}_{5} \mathrm{H}_{10}$
C. $\mathrm{C}_{6} \mathrm{H}_{14}$
D. $\mathrm{C}_{6} \mathrm{H}_{10}$
19. Which of the following is the general formula of the alkynes?
A. $\mathrm{C}_{n} \mathrm{H}_{2 n}$
B. $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$
C. $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
D. $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
20. What is the best name for the following compound?
A. 3-methylenehexane
B. 2-propyl-1-butene

C. 4-ethyl-4-pentene
D. 2-ethyl-1-pentene

SECTION B:

There are FOUR questions in this section. Answer all questions. Show clearly, where necessary, how you arrive at the answer as all working will carry marks.

Question 1

a) All alkali metals react with water to produce hydrogen gas and the corresponding metal hydroxide. A typical reaction is that between Lithium and water:

$$
\mathrm{Li}(s)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{LiOH}(a q)+\mathrm{H}_{2}(g)
$$

How many grams of Li are needed to produce 9.89 g of H_{2} ?
b) Titanium is prepared by the reaction of titanium (IV) chloride with molten magnesium between $950^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$.

$$
\mathrm{TiCl}_{4}(g)+\mathrm{Mg}(l) \rightarrow \mathrm{Ti}(s)+\mathrm{MgCl}_{2}(l)
$$

$3.54 \times 10^{7} \mathrm{~g}$ of TiCl_{4} are reacted with $1.13 \times 10^{7} \mathrm{~g}$ of Mg .
(i) Calculate the theoretical yield of Ti in grams
(ii) Calculate the \%yield if $7.91 \times 10^{6} \mathrm{~g}$ of Ti are actually obtained.

Question 2

An aqueous solution that contains 571.6 g sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in one liter of solution has a density of $1.329 \mathrm{gcm}^{-3}$. Calculate the following for the $\mathrm{H}_{2} \mathrm{SO}_{4}$:
(a) Molarity
(b) Mass percent
(c) Molality
(d) Mole fraction

Question 3

a) Ethylene glycol $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})$ is a common automobile antifreeze. It is water soluble and non-volatile (b.p $197^{\circ} \mathrm{C}$). Calculate the freezing point of a solution containing 651 g of this substance 2505 g of water. $\left(\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
b) The average osmotic pressure of seawater is about 30.0 atm at $25^{\circ} \mathrm{C}$. Calculate the molar concentration of an aqueous solution of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ that is isotonic with seawater.
c) What are the factors that affect solubility?

Question 4

Give the IUPAC names for the following compounds:
(a) Write the IUPAC names of the following compounds:
(i)

(ii)

(iii)
(b) State the functional group in each of the following compounds:
(i)

(ii)

(iii)

(iv) $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(v)
$\mathrm{CH}_{3}-\mathrm{OH}$
(vi)

THE END

GOODLUCK

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ $1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

1																	18
$\begin{array}{\|c\|} \hline \mathbf{H} \\ \mathbf{H} \\ \hline \end{array}$	2											13	14	15	16	17	2 $\mathbf{H e}$ 4.00260
3	4											5	6	7	8	9	10
$\mathbf{L i}$	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	8.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	$\mathbf{X e}$
85.4678	87.62	88.9059	91.22	92.9064	95.94	（98）	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	$\mathbf{P t}$	Au	Hg	Tl	$\mathbf{P b}$	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	（209）	（210）	（222）
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
${ }_{(F r}$	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uno
（223）	226.025	（260）	（261）	（262）	（263）	（264）	（265）	（268）	（269）	（272）	（269）						

우ํ	
$\left[\begin{array}{lll} 0 & 0 \\ \hline & 9 \\ 0 \end{array}\right.$	
¢ \％	
勺里啇	
N E	
万気	
	－
∞ ¢	
$\left[\begin{array}{ccc} \text { in } & \stackrel{\circ}{9} \\ \hline 0 \\ 0 \end{array}\right]$	

Actinides：

